diff --git a/Documentation/User Manual Source/Release Notes Vecto3.x.pdf b/Documentation/User Manual Source/Release Notes Vecto3.x.pdf
index 60d6f2363f6826accfe8ee8eef0267df576d3d6a..4df7d3f6eb9d833d7d9a745eb8fc8bebf1aa5d7c 100644
Binary files a/Documentation/User Manual Source/Release Notes Vecto3.x.pdf and b/Documentation/User Manual Source/Release Notes Vecto3.x.pdf differ
diff --git a/Documentation/User Manual/help.html b/Documentation/User Manual/help.html
index 371b472a23b31ddf22efce3f08686959a6dce823..2060d6c710de62878ba55310ea5053bb2ab575c4 100644
--- a/Documentation/User Manual/help.html	
+++ b/Documentation/User Manual/help.html	
@@ -3045,12 +3045,12 @@ Example: “Gears\Gear1.vtlm” points to the “Gears” subdirectory of the Ge
 <p>The file is described <a href="#torque-converter-characteristics-.vtcc">here</a>.</p>
 <p>This file defines the torque converter characteristics as described in VDI 2153:</p>
 <ul>
-<li><strong>Speed Ratio</strong> (ν) = Output Speed / Input Speed</li>
-<li><strong>Torque Ratio</strong> (μ) = Output Torque / Input Torque</li>
-<li><strong>Input Torque</strong> (T<sub>ref(ν)</sub>) is the input torque (over ν) for a specific reference engine speed (see below).</li>
+<li><strong>Speed Ratio</strong> (<img style="vertical-align:middle" src="" alt="\nu" title="\nu" />) = Output Speed / Input Speed</li>
+<li><strong>Torque Ratio</strong> (<img style="vertical-align:middle" src="" alt="\mu" title="\mu" />) = Output Torque / Input Torque</li>
+<li><strong>Input Torque</strong> (<img style="vertical-align:middle" src="" alt="T_{ref}(\nu)" title="T_{ref}(\nu)" />) is the input torque (over ν) for a specific reference engine speed (see below).</li>
 </ul>
 <p>The Input Torque at  reference engine speed is needed to calculate the actual engine torque using this formula:</p>
-<p><img style="vertical-align:middle" src="" alt="T_{in} = T_{ref}(v) \cdot ( \frac{n_{in}}{n_{ref}} )^{2}" title="T_{in} = T_{ref}(v) \cdot ( \frac{n_{in}}{n_{ref}} )^{2}" /></p>
+<p><img style="vertical-align:middle" src="" alt="T_{in} = T_{ref}(\nu) \cdot ( \frac{n_{in}}{n_{ref}} )^{2}" title="T_{in} = T_{ref}(\nu) \cdot ( \frac{n_{in}}{n_{ref}} )^{2}" /></p>
 <p><img style="vertical-align:middle" src="" alt="\mu(\nu) = \frac{T_{out}}{T_{in}}" title="\mu(\nu) = \frac{T_{out}}{T_{in}}" /></p>
 <p>with:</p>
 <ul>
@@ -3396,18 +3396,35 @@ Example: “Gears\Gear1.vtlm” points to the “Gears” subdirectory of the Ge
 </ul>
 <p>The first two curves are read from a single .vemp file (see <a href="#electric-motor-max-torque-file-.vemp">Electric Motor Max Torque File (.vemp)</a>). The drag curve is provided in a .vemd file (see <a href="#electric-motor-drag-curve-file-.vemd">Electric Motor Drag Curve File (.vemd)</a>) and the electric power map in a .vemo file (see <a href="#electric-motor-map-.vemo">Electric Motor Map (.vemo)</a>).</p>
 <p>The convention for all input files is that positive torque values drive the vehicle while negative torque values apply additional drag and generate electric power.</p>
+<p>The follwing picture shows the signals used in VECTO and provided in the .vmod file. The VECTO convention is that positive torque adds additional drag to the drivetrain. Thus, if the electric motor propells the vehicle it applies negative torque.</p>
 <div class="figure">
 <img src="" />
 
+</div>
+<div id="electric-motor-model" class="section level3">
+<h3>Electric Motor Model</h3>
+<p>The VECTO component for the electric motor contains the electric motor itself which is connected via a transmission stage to the drivetrain. The ratio and efficiency of the transmission stage can be defined in the vehicle model.</p>
+<div class="figure">
+<img src="" />
+
+</div>
+<p>The naming convention for the signals is that ‘X’ denotes the position of the EM in the powertrain. P_X_… denotes signals related to the drivetrain speed while P_X-em_… denotes signals to the electric motor shaft.</p>
+<p>P_X_in = P_X_out + P_X_mech</p>
+<p>P_X_mech = P_X-em_mech + P_X_transm_loss</p>
+<p>P_X-em_mech = P_X-em_mech_elmap + P_X-em_inertia</p>
+<p>P_X-em_mech_elmap = P_X-em_el + P_X-em_loss</p>
+<p>P_X-em_mech_elmap = n_X-em * T_X-em_map</p>
+<p>P_X-em_el = PowerMap(n_X-em, T_X-em_map)</p>
+<p>P_X_loss = P_X_mech - P_X-em_el</p>
 </div>
 <div id="thermal-de-rating" class="section level3">
 <h3>Thermal De-Rating</h3>
 <p>The electric machine can be overloaded for a certain period. In addition to the maximum drive and generation torque (which already is in overload condition) the mechanical power the electric machine can generate is required.</p>
 <p>The basic principal of the thermal de-rating is as follows: based on the continuous power and the angular velocity for the continuous power as well as the maximum overload time a thermal energy buffer is calculated. During the simulation the difference between the current losses in the electric machine and the losses at the continuous power operating point are integrated over time. If this value reaches the capacity of the thermal energy buffer the electric machine can only deliver the specified continuous power until the thermal energy buffer goes below a certain.</p>
 <p><img style="vertical-align:middle" src="" alt="E_\textrm{th,buf} = P_\textrm{loss,cont} * t_\textrm{ovl}" title="E_\textrm{th,buf} = P_\textrm{loss,cont} * t_\textrm{ovl}" /></p>
-<p><img style="vertical-align:middle" src="" alt="P_\textrm{loss,cont} = P_\textrm{map, el}(\frac{P_\textrm{cont}}{n_\textrm{P, cont}}, n_\textrm{P, cont}) - P_\textrm{cont}" title="P_\textrm{loss,cont} = P_\textrm{map, el}(\frac{P_\textrm{cont}}{n_\textrm{P, cont}}, n_\textrm{P, cont}) - P_\textrm{cont}" /></p>
+<p><img style="vertical-align:middle" src="" alt="P_\textrm{loss,cont} = P_\textrm{cont} - P_\textrm{map, el}(\frac{P_\textrm{cont}}{n_\textrm{P, cont}}, n_\textrm{P, cont})" title="P_\textrm{loss,cont} = P_\textrm{cont} - P_\textrm{map, el}(\frac{P_\textrm{cont}}{n_\textrm{P, cont}}, n_\textrm{P, cont})" /></p>
 <p>In every simulation step the losses of the electric machine are accumulated:</p>
-<p><img style="vertical-align:middle" src="" alt="E_{\textrm{ovl,} i + 1} = E_{\textrm{ovl,} i} + P_\textrm{loss, i} * dt" title="E_{\textrm{ovl,} i + 1} = E_{\textrm{ovl,} i} + P_\textrm{loss, i} * dt" /></p>
+<p><img style="vertical-align:middle" src="" alt="E_{\textrm{ovl,} i + 1} = E_{\textrm{ovl,} i} + (P_\textrm{loss, i} - P_\textrm{loss,cont}) * dt" title="E_{\textrm{ovl,} i + 1} = E_{\textrm{ovl,} i} + (P_\textrm{loss, i} - P_\textrm{loss,cont}) * dt" /></p>
 <p><img style="vertical-align:middle" src="" alt="P_\textrm{loss, i} = T_\textrm{em, mech} * n_\textrm{em} - P_\textrm{map, el}(T_\textrm{em, mech}, n_\textrm{em})" title="P_\textrm{loss, i} = T_\textrm{em, mech} * n_\textrm{em} - P_\textrm{map, el}(T_\textrm{em, mech}, n_\textrm{em})" /></p>
 <p>If <img style="vertical-align:middle" src="" alt="E_\textrm{ovl, i}" title="E_\textrm{ovl, i}" /> reaches the overload capacity <img style="vertical-align:middle" src="" alt="E_\textrm{th,buf}" title="E_\textrm{th,buf}" /> the power of the electric machine is limited to the continuous power until <img style="vertical-align:middle" src="" alt="E_\textrm{ovl,i}" title="E_\textrm{ovl,i}" /> goes below the overload capacity multiplied by a certain factor. Then the maximum torque is available again.</p>
 </div>
@@ -4112,11 +4129,11 @@ If the battery’s SoC is below the lower SoC threshold <img style="vertical-ali
 <p>This file is used to interpolate the electric power required for a certain mechanical power at the eletric motor’s shaft. The file uses the <a href="#csv">VECTO CSV format</a>.</p>
 <ul>
 <li>Filetype: .vemo</li>
-<li>Header: <strong>n [rpm] , T [Nm] , P_el [Nm]</strong></li>
+<li>Header: <strong>n [rpm] , T [Nm] , P_el [kW]</strong></li>
 <li>Requires at least 2 data entries</li>
 </ul>
 <p><strong>Example:</strong></p>
-<pre><code>n [rpm], T [Nm], P_el [W]
+<pre><code>n [rpm], T [Nm], P_el [kW]
 0      , -1600 , 19.6898
 0      , -1550 , 18.5438
 0      , -1500 , 17.4322
@@ -6308,64 +6325,104 @@ CycleTime,UnknownCycleName,3600</code></pre>
 <td>0 if the combustion engine is switched off (either during stand-still or eco-roll), 1 otherwise</td>
 </tr>
 <tr class="even">
-<td>n_em&lt;_POS&gt;</td>
+<td>i_&lt;POS}-em</td>
+<td>[-]</td>
+<td>Ratio between drivetrain and electric motor shaft</td>
+</tr>
+<tr class="odd">
+<td>n_&lt;POS&gt;-em_avg</td>
 <td>[rpm]</td>
 <td>Angular speed of the electric motor at position <em>POS</em></td>
 </tr>
+<tr class="even">
+<td>T_&lt;POS&gt;-em</td>
+<td>[Nm]</td>
+<td>Torque at the shaft of electric motor at position <em>POS</em>. Positive values mean that the electric motor acts as generator, negative torque values mean that the electric motor propels the vehicle</td>
+</tr>
 <tr class="odd">
-<td>T_em&lt;_POS&gt;</td>
+<td>T_&lt;POS&gt;-em_map</td>
 <td>[Nm]</td>
-<td>Torque applied by the electric motor at position <em>POS</em>.Positive values mean that the electric motor acts as generator, negative torque values mean that the electric motor propels the vehicle</td>
+<td>Torque internal torque of the electric motor at posision <em>POS</em>. Takes into account the electric motor’s intertia. Positive values mean that the electric motor acts as generator, negative torque values mean that the electric motor propels the vehicle</td>
 </tr>
 <tr class="even">
-<td>T_em&lt;_POS&gt;_mot_max</td>
+<td>T_&lt;POS&gt;-em_drive_max</td>
 <td>[Nm]</td>
 <td>Maximum torque the electric machine can apply to propel the vehicle. This already considers the maximum current the battery can provide</td>
 </tr>
 <tr class="odd">
-<td>T_em&lt;_POS&gt;_gen_max</td>
+<td>T_&lt;POS&gt;-em_gen_max</td>
 <td>[Nm]</td>
 <td>Maximum torque the electric machine can apply to generate electric power. This already considers the maximum charge current the battery can handle.</td>
 </tr>
 <tr class="even">
-<td>P_em&lt;_POS&gt;_in</td>
+<td>P_&lt;POS&gt;-em_drive_max</td>
 <td>[kW]</td>
-<td>Power at the electric machine’s input shaft</td>
+<td>Maximum power the electric motor can provide to drive the vehicle. This already considers the maximum electric power the battery can provide.</td>
 </tr>
 <tr class="odd">
-<td>P_em&lt;_POS&gt;_out</td>
+<td>P_&lt;POS&gt;-em_gen_max</td>
 <td>[kW]</td>
-<td>Power at the electric machine’s output shaft</td>
+<td>Maximum power the electric machine can generate. This already considers the maximum charge power the battery can handle.</td>
 </tr>
 <tr class="even">
-<td>P_em&lt;_POS&gt;_mech</td>
+<td>P_&lt;POS&gt;-em_mech</td>
 <td>[kW]</td>
-<td>Mechanical power the electric machine applies to the drivetrain. Positive values mean that electric energy is generated while negative values mean that the electric machine drives the vehicle.</td>
+<td>Power at the shaft of the electric motor at position <em>POS</em></td>
 </tr>
 <tr class="odd">
-<td>P_em&lt;_POS&gt;_el</td>
+<td>P_&lt;POS&gt;-em_mech_map</td>
+<td>[kW]</td>
+<td>Mechanical powerthe electric motor at position <em>POS</em> applies for driving or recuperation, including the electric motor’s inertia</td>
+</tr>
+<tr class="even">
+<td>P_&lt;POS&gt;-em_el</td>
 <td>[kW]</td>
 <td>Electric power generated or consumed by the elctric machine</td>
 </tr>
+<tr class="odd">
+<td>P_&lt;POS&gt;-em_loss</td>
+<td>[kW]</td>
+<td>Losses in the electric machine due to converting electric power to mechanical power</td>
+</tr>
 <tr class="even">
-<td>P_em&lt;_POS&gt;_drive_max</td>
+<td>P_&lt;POS&gt;-em_inertia_loss</td>
 <td>[kW]</td>
-<td>Maximum power the electric motor can provide to drive the vehicle. This already considers the maximum electric power the battery can provide.</td>
+<td>Inertia loses of the electric machine</td>
 </tr>
 <tr class="odd">
-<td>P_em&lt;_POS&gt;_gen_max</td>
+<td>P_&lt;POS&gt;_in</td>
 <td>[kW]</td>
-<td>Maximum power the electric machine can generate. This already considers the maximum charge power the battery can handle.</td>
+<td>Power at the electric machine’s input shaft (drivetrain)</td>
 </tr>
 <tr class="even">
-<td>P_em&lt;_POS&gt;_loss</td>
+<td>P_&lt;POS&gt;_out</td>
 <td>[kW]</td>
-<td>Losses in the electric machine due to converting electric power to mechanical power</td>
+<td>Power at the electric machine’s output shaft (drivetrain)</td>
 </tr>
 <tr class="odd">
-<td>P_em&lt;_POS&gt;_inertia_loss</td>
+<td>P_&lt;POS&gt;_mech</td>
 <td>[kW]</td>
-<td>Inertia loses of the electric machine</td>
+<td>Mechanical power the electric machine applies to the drivetrain. Positive values mean that electric energy is generated while negative values mean that the electric machine drives the vehicle.</td>
+</tr>
+<tr class="even">
+<td>P_&lt;POS&gt;_loss</td>
+<td>[kW]</td>
+<td>The total sum of losses of the electric motor at position <em>POS</em>. Calcualted as the difference of mecanical power applied at the drivetrain and the electrical power drawn from the REESS.</td>
+</tr>
+<tr class="odd">
+<td>P_&lt;POS&gt;_transm_loss</td>
+<td>[kW]</td>
+<td>Losses of the transmission stage inside the electric motor component</td>
+</tr>
+<tr class="even">
+<td>EM_OVL-&lt;POS&gt;-em</td>
+<td>[%]</td>
+<td>Used capacity of the thermal overload buffer of the thermal derating model</td>
+</tr>
+<tr class="odd">
+<td>EM_&lt;POS&gt;_off</td>
+<td>[-]</td>
+<td>Indicates if the electric motor at position <em>POS</em> is energized or not.</td>
 </tr>
 <tr class="even">
 <td>P_bat_T</td>
@@ -6806,6 +6863,116 @@ CycleTime,UnknownCycleName,3600</code></pre>
 <td>[%]</td>
 <td>Time share of stop phases (v &lt; 0.1 [m/s])</td>
 </tr>
+<tr class="odd">
+<td>E_EM_&lt;POS&gt;_drive</td>
+<td>[kWh]</td>
+<td>Mechanical energy applied at the drivetrain by the electric machine at position <em>POS</em> to drive the vehicle</td>
+</tr>
+<tr class="even">
+<td>E_EM_&lt;POS&gt;_gen</td>
+<td>[kWh]</td>
+<td>Mechanical energy at the drivetrain recuperated by the electric machine at position <em>POS</em></td>
+</tr>
+<tr class="odd">
+<td>η_EM_&lt;POS&gt;_drive</td>
+<td>[-]</td>
+<td>Average efficiency at the drivetrain of the electric machine when the electric machine drives the vehicle. Based on the mechanical energy at the drivetrain and the electric power.</td>
+</tr>
+<tr class="even">
+<td>η_EM_&lt;POS&gt;_gen</td>
+<td>[-]</td>
+<td>Average efficiency at the drivetrain of the electric machine when the electric machine generates electric energy. Based on the mechanical energy at the drivetrain and the electric power</td>
+</tr>
+<tr class="odd">
+<td>E_EM_&lt;POS&gt;-em_drive</td>
+<td>[kWh]</td>
+<td>Mechanical energy at the electric motor shaft applied by the electric machine at position <em>POS</em> to drive the vehicle</td>
+</tr>
+<tr class="even">
+<td>E_EM_&lt;POS&gt;-em_gen</td>
+<td>[kWh]</td>
+<td>Mechanical energy at the electric motor shaft recuperated by the electric machine at position <em>POS</em></td>
+</tr>
+<tr class="odd">
+<td>η_EM_&lt;POS&gt;-em_drive</td>
+<td>[-]</td>
+<td>Average efficiency of the electric machine when the electric machine drives the vehicle. Based on the mechanical energy at the electric motor shaft and the electric energy.</td>
+</tr>
+<tr class="even">
+<td>η_EM_&lt;POS&gt;-em_gen</td>
+<td>[-]</td>
+<td>Average efficiency of the electric machine when the electric machine generates electric energy. Based on the mechanical energy at the electric motor shaft and the electric energy.</td>
+</tr>
+<tr class="odd">
+<td>n_EM_&lt;POS&gt;_avg</td>
+<td>[rpm]</td>
+<td>Average angular speed of the electric machine</td>
+</tr>
+<tr class="even">
+<td>E_EM_&lt;POS&gt;_off_loss</td>
+<td>[kWh]</td>
+<td>Total losses added by the electric machine when the electric machine is not energized (i.e., the electric machine’s drag losses)</td>
+</tr>
+<tr class="odd">
+<td>E_EM_&lt;POS&gt;_transm_loss</td>
+<td>[kWh]</td>
+<td>Losses of the transmission stage in the electric motor component.</td>
+</tr>
+<tr class="even">
+<td>E_EM_&lt;POS&gt;-em_loss</td>
+<td>[kWh]</td>
+<td>Total losses of the electric motor component. Calculated from P_<POS>-em_loss</td>
+</tr>
+<tr class="odd">
+<td>E_EM_&lt;POS&gt;_loss</td>
+<td>[kWh]</td>
+<td>Losses of the electric machine. Calculated from P_<POS>_loss</td>
+</tr>
+<tr class="even">
+<td>EM &lt;POS&gt; off time share</td>
+<td>[%]</td>
+<td>Time share the electric motor is not energized during the cycle.</td>
+</tr>
+<tr class="odd">
+<td>Battery Start SoC</td>
+<td>[%]</td>
+<td>Battery state of charge at the beginning of the simulation run</td>
+</tr>
+<tr class="even">
+<td>Battery End SoC</td>
+<td>[%]</td>
+<td>Battery state of charge at the end of the simulation run</td>
+</tr>
+<tr class="odd">
+<td>Battery Delta SoC</td>
+<td>[kWh]</td>
+<td>Difference of the energy stored in the battery between the beginning and end of the simulation run</td>
+</tr>
+<tr class="even">
+<td>E_Batt_loss</td>
+<td>[kWh]</td>
+<td>Total losses in the battery due to its internal resistance</td>
+</tr>
+<tr class="odd">
+<td>E_Batt_T_chg</td>
+<td>[kWh]</td>
+<td></td>
+</tr>
+<tr class="even">
+<td>E_Batt_T_dischg</td>
+<td>[kWh]</td>
+<td></td>
+</tr>
+<tr class="odd">
+<td>E_Batt_int_chg</td>
+<td>[kWh]</td>
+<td></td>
+</tr>
+<tr class="even">
+<td>E_Batt_int_dischg</td>
+<td>[kWh]</td>
+<td></td>
+</tr>
 </tbody>
 </table>
 <p><strong>Note:</strong> The fuel name is only added to the fuel consumption signals for vehicles with dual-fuel engines. In case single-fuel and dual-fuel vehicles are simulated in one simulation run, the fuel consumption for single-fuel vehicles is reported without the fuel name suffix while the fuel consumption of dual fuel vehicles contains the fuel name suffix!</p>
diff --git a/HashingTool/Properties/Version.cs b/HashingTool/Properties/Version.cs
index 26792b1611bf66d5f028125fa8d65b72318e7fc6..e7df7786c475fde134695f288d07f7dd136ea109 100644
--- a/HashingTool/Properties/Version.cs
+++ b/HashingTool/Properties/Version.cs
@@ -30,5 +30,5 @@
 */
 
 using System.Reflection;
-[assembly: AssemblyVersion("0.2.0.2108")]
-[assembly: AssemblyFileVersion("0.2.0.2108")]
+[assembly: AssemblyVersion("0.2.0.2205")]
+[assembly: AssemblyFileVersion("0.2.0.2205")]
diff --git a/VectoCommon/VectoCommon/Properties/Version.cs b/VectoCommon/VectoCommon/Properties/Version.cs
index 0d7be451226308f51246c683dab59bff19e9f78a..64b160b3b978821e44bda0250f96e3b35f876b3c 100644
--- a/VectoCommon/VectoCommon/Properties/Version.cs
+++ b/VectoCommon/VectoCommon/Properties/Version.cs
@@ -30,5 +30,5 @@
 */
 
 using System.Reflection;
-[assembly: AssemblyVersion("0.7.1.2108")]
-[assembly: AssemblyFileVersion("0.7.1.2108")]
\ No newline at end of file
+[assembly: AssemblyVersion("0.7.3.2205")]
+[assembly: AssemblyFileVersion("0.7.3.2205")]
\ No newline at end of file
diff --git a/VectoCommon/VectoHashing/Properties/Version.cs b/VectoCommon/VectoHashing/Properties/Version.cs
index 9320342a67e43f4b9648e969f242d75b8d3c7ca9..e029270f331d8634a9d50236e60e1726d1714930 100644
--- a/VectoCommon/VectoHashing/Properties/Version.cs
+++ b/VectoCommon/VectoHashing/Properties/Version.cs
@@ -30,5 +30,5 @@
 */
 
 using System.Reflection;
-[assembly: AssemblyVersion("1.2.0.2108")]
-[assembly: AssemblyFileVersion("1.2.0.2108")]
+[assembly: AssemblyVersion("1.2.0.2205")]
+[assembly: AssemblyFileVersion("1.2.0.2205")]
diff --git a/VectoConsole/Properties/Version.cs b/VectoConsole/Properties/Version.cs
index ed1c7e3760038fd998f186b3912a76d03e43b89b..01f066262a07a23924fbb4753b61f9511d35353b 100644
--- a/VectoConsole/Properties/Version.cs
+++ b/VectoConsole/Properties/Version.cs
@@ -30,5 +30,5 @@
 */
 
 using System.Reflection;
-[assembly: AssemblyVersion("0.7.1.2108")]
-[assembly: AssemblyFileVersion("0.7.1.2108")]
\ No newline at end of file
+[assembly: AssemblyVersion("0.7.3.2205")]
+[assembly: AssemblyFileVersion("0.7.3.2205")]
\ No newline at end of file
diff --git a/VectoCore/VectoCore/Properties/Version.cs b/VectoCore/VectoCore/Properties/Version.cs
index f54d6f67b5d0ff97d4a935bc34ccfc7fac75c279..550a08e25c644dc96dfc6488e7b5c7b6bf1c3134 100644
--- a/VectoCore/VectoCore/Properties/Version.cs
+++ b/VectoCore/VectoCore/Properties/Version.cs
@@ -30,5 +30,5 @@
 */
 
 using System.Reflection;
-[assembly: AssemblyVersion("0.7.1.2108")]
-[assembly: AssemblyFileVersion("0.7.1.2108")]
+[assembly: AssemblyVersion("0.7.3.2205")]
+[assembly: AssemblyFileVersion("0.7.3.2205")]
diff --git a/VectoCore/VectoCore/Utils/VectoVersionCore.cs b/VectoCore/VectoCore/Utils/VectoVersionCore.cs
index 35eaf8ae0727f741318901cee0f06d8cce1d4d9f..b7bf7119a8800aed8a7320f7600e22bb2b7db862 100644
--- a/VectoCore/VectoCore/Utils/VectoVersionCore.cs
+++ b/VectoCore/VectoCore/Utils/VectoVersionCore.cs
@@ -47,7 +47,7 @@ namespace TUGraz.VectoCore.Utils
 		public static string VersionNumber
 		{
 			get {
-				return "0.7.2.2118" + SUFFIX;
+				return "0.7.3.2205" + SUFFIX;
 			}
 		}