import secrets import numpy as np, pandas as pd, getpass as gt class Config(secrets.Secrets): PUBLIC_SAVE_PATH = f'/eos/jeodpp/data/projects/LEGENT/transfer/{gt.getuser()}/' EEA_2013 = { 'delimiter': '\t', 'encoding': 'utf-8', 'year': 2013, 'column_names': [ 'id', 'country', 'oem_group', 'oem_mh', 'oem_manufacturer', 'oem_ms', 'type_approval_number', 'type', 'variant', 'version', 'oem_make', 'commercial_name', 'vehicle_category_type_approved', 'registrations', 'co2_nedc_declared', 'mass_in_running_order', 'wheel_base', 'axle_width_steering_axle', 'axle_width_other_axle', 'fuel_type', 'fuel_mode', 'engine_capacity', 'engine_max_power', 'electric_energy_consumption', 'eco_innovative_technology', 'eco_co2_reduction_nedc' ] } EEA_2014 = { 'delimiter': '\t', 'encoding': 'utf-8', 'year': 2014, 'column_names': [ 'id', 'country', 'oem_group', 'oem_mh', 'oem_manufacturer', 'oem_ms', 'type_approval_number', 'type', 'variant', 'version', 'oem_make', 'commercial_name', 'vehicle_category_type_approved', 'registrations', 'co2_nedc_declared', 'mass_in_running_order', 'wheel_base', 'axle_width_steering_axle', 'axle_width_other_axle', 'fuel_type', 'fuel_mode', 'engine_capacity', 'engine_max_power', 'electric_energy_consumption', 'eco_innovative_technology', 'eco_co2_reduction_nedc' ] } EEA_2015 = { 'delimiter': '\t', 'encoding': 'utf-8', 'year': 2015, 'column_names': [ 'id', 'country', 'oem_group', 'oem_mh', 'oem_manufacturer', 'oem_ms', 'type_approval_number', 'type', 'variant', 'version', 'oem_make', 'commercial_name', 'vehicle_category_type_approved', 'registrations', 'co2_nedc_declared', 'mass_in_running_order', 'wheel_base', 'axle_width_steering_axle', 'axle_width_other_axle', 'fuel_type', 'fuel_mode', 'engine_capacity', 'engine_max_power', 'electric_energy_consumption', 'eco_innovative_technology', 'eco_co2_reduction_nedc' ] } EEA_2016 = { 'delimiter': '\t', 'encoding': 'utf-16', 'year': 2016, 'column_names': [ 'id', 'country', 'oem_group', 'oem_mh', 'oem_manufacturer', 'oem_ms', 'type_approval_number', 'type', 'variant', 'version', 'oem_make', 'commercial_name', 'vehicle_category_type_approved', 'registrations', 'co2_nedc_declared', 'mass_in_running_order', 'wheel_base', 'axle_width_steering_axle', 'axle_width_other_axle', 'fuel_type', 'fuel_mode', 'engine_capacity', 'engine_max_power', 'electric_energy_consumption', 'eco_innovative_technology', 'eco_co2_reduction_nedc' ] } EEA_2017 = { 'delimiter': '\t', 'encoding': 'utf-16', 'year': 2017, 'column_names': [ 'id', 'country', 'oem_group', 'vehicle_family_id', 'oem_mh', 'oem_manufacturer', 'oem_ms', 'type_approval_number', 'type', 'variant', 'version', 'oem_make', 'commercial_name', 'vehicle_category_type_approved', 'vehicle_category_register', 'mass_in_running_order', 'mass_wltp', 'co2_nedc_declared', 'co2_wltp_declared', 'wheel_base', 'axle_width_steering_axle', 'axle_width_other_axle', 'fuel_type', 'fuel_mode', 'engine_capacity', 'engine_max_power', 'electric_energy_consumption', 'eco_innovative_technology', 'eco_co2_reduction_nedc', 'eco_co2_reduction_wltp', 'deviation_factor', 'verification_factor', 'registrations' ] } EEA_2018 = { 'delimiter': '\t', 'encoding': 'utf-8', 'year': 2018, 'column_properties': pd.DataFrame([ ['id', 'ID', np.int32], ['country', 'MS', np.object], ['oem_group', 'Mp', np.object], ['vehicle_family_id', 'VFN', np.object], ['oem_mh', 'Mh', np.object], ['oem_manufacturer', 'Man', np.object], ['oem_ms', 'MMS', np.object], ['type_approval_number', 'Tan', np.object], ['type', 'T', np.object], ['variant', 'Va', np.object], ['version', 'Ve', np.object], ['oem_make', 'Mk', np.object], ['commercial_name', 'Cn', np.object], ['vehicle_category_type_approved', 'Ct', np.object], ['vehicle_category_register', 'Cr', np.object], ['mass_in_running_order', 'm (kg)', np.float16], ['mass_wltp', 'Mt', np.float16], ['co2_nedc_declared', 'Enedc (g/km)', np.float16], ['co2_wltp_declared', 'Ewltp (g/km)', np.float16], ['wheel_base', 'W (mm)', np.float16], ['axle_width_steering_axle', 'At1 (mm)', np.float16], ['axle_width_other_axle', 'At2 (mm)', np.float16], ['fuel_type', 'Ft', np.object], ['fuel_mode', 'Fm', np.object], ['engine_capacity', 'ec (cm3)', np.float16], ['engine_max_power', 'ep (KW)', np.float16], ['electric_energy_consumption', 'z (Wh/km)', np.float16], ['eco_innovative_technology', 'It', np.object], ['eco_co2_reduction_nedc', 'Ernedc (g/km)', np.float16], ['eco_co2_reduction_wltp', 'Erwltp (g/km)', np.float16], ['deviation_factor', 'De', np.float16], ['verification_factor', 'Vf', np.float16], ['registrations', 'r', np.int32] ], columns=['db_names', 'names', 'coltype']) } EEA_2019 = { 'delimiter': ',', 'encoding': 'utf-16', 'year': 2019, 'column_names': [ 'id', 'country', 'vehicle_family_id', 'oem_group', 'oem_mh', 'oem_manufacturer', 'oem_ms', 'type_approval_number', 'type', 'variant', 'version', 'oem_make', 'commercial_name', 'vehicle_category_type_approved', 'vehicle_category_register', 'registrations', 'mass_in_running_order', 'mass_wltp', 'co2_nedc_declared', 'co2_wltp_declared', 'wheel_base', 'axle_width_steering_axle', 'axle_width_other_axle', 'fuel_type', 'fuel_mode', 'engine_capacity', 'engine_max_power', 'electric_energy_consumption', 'eco_innovative_technology', 'eco_co2_reduction_nedc', 'eco_co2_reduction_wltp', 'deviation_factor', 'verification_factor', 'status', 'year' ] } EEA_2020 = { 'delimiter': ',', 'encoding': 'utf-8', 'year': 2020, 'column_properties': pd.DataFrame([ ['id', 'ID', np.int32], ['country', 'Country', np.object], ['vehicle_family_id', 'VFN', np.object], ['oem_group', 'Mp', np.object], ['oem_mh', 'Mh', np.object], ['oem_manufacturer', 'Man', np.object], ['oem_ms', 'MMS', np.object], ['type_approval_number', 'Tan', np.object], ['type', 'T', np.object], ['variant', 'Va', np.object], ['version', 'Ve', np.object], ['oem_make', 'Mk', np.object], ['commercial_name', 'Cn', np.object], ['vehicle_category_type_approved', 'Ct', np.object], ['vehicle_category_register', 'Cr', np.object], ['registrations', 'r', np.int32], ['mass_in_running_order', 'm (kg)', np.float16], ['mass_wltp', 'Mt', np.float16], ['co2_nedc_declared', 'Enedc (g/km)', np.float16], ['co2_wltp_declared', 'Ewltp (g/km)', np.float16], ['wheel_base', 'W (mm)', np.float16], ['axle_width_steering_axle', 'At1 (mm)', np.float16], ['axle_width_other_axle', 'At2 (mm)', np.float16], ['fuel_type', 'Ft', np.object], ['fuel_mode', 'Fm', np.object], ['engine_capacity', 'ec (cm3)', np.float16], ['engine_max_power', 'ep (KW)', np.float16], ['electric_energy_consumption', 'z (Wh/km)', np.float16], ['eco_innovative_technology', 'IT', np.object], ['eco_co2_reduction_nedc', 'Ernedc (g/km)', np.float16], ['eco_co2_reduction_wltp', 'Erwltp (g/km)', np.float16], ['deviation_factor', 'De', np.float16], ['verification_factor', 'Vf', np.float16], ['status', 'Status', np.object], ['year', 'year', np.int32], ['electric_range', 'Electric range (km)', np.float16] ], columns=['db_names', 'names', 'coltype']) }