Forked from
VECTO / VECTO Sim
11579 commits behind the upstream repository.
-
Kostis ANAGNOSTOPOULOS authored
* Include all except object-files.
Kostis ANAGNOSTOPOULOS authored* Include all except object-files.
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
cBatModel.vb 13.66 KiB
Public Class cBatModel
Private sFilePath As String
Private a0 As Single, a1 As Single, a2 As Single, a3 As Single, a4 As Single, a5 As Single, a6 As Single
Private b0 As Single, b1 As Single, b2 As Single, b3 As Single, b4 As Single, b5 As Single, b6 As Single
Private c0 As Single, c1 As Single, c2 As Single, c3 As Single, c4 As Single
Private d0 As Single, d1 As Single, d2 As Single
Private NCELLS As Single
Private RI_20 As Single
Private T_AMB As Single
Private T_MAX As Single
Private CP As Single
Private MB As Single
Public SOC_Kap As Single
Public SOC_MAX As Single
Public SOC_MIN As Single
'Aktuelle Daten (d.h. zum aktuellen (zuletzt berechneten) Zeitschritt)
Public TempBat As Single
Public Ubat As Single 'Spannung [V] (Array)
Public Ibat As Single 'Strom [A] (Array)
Public SOC As Single
Public PbatV As Single 'Verluste in Batterie [kW] (Array)
Private LastTempBat As Single
Private LastSOC As Single
Private PmaxEntl As Single 'maximal zulässige Leistung zum Assistieren (Batterie entladen) [kW] Vorzeichen negativ (Renhart Standard)
Private PmaxLad As Single 'maximal zulässige Leistung zum Generieren (Batterie laden) [kW] Vorzeichen positiv (Renhart Standard)
Private MyEV As cPower
Public Sub New(ByRef MycPower As cPower)
MyEV = MycPower
End Sub
Public Sub CleanUp()
MyEV = Nothing
End Sub
Public Function PiBat(ByVal PiEM As Single) As Single
'TODO...
Return PiEM / 0.9
End Function
'Maximal zulässige Leistung zum Antreiben (Batterie entladen) [kW] Vorzeichen positiv (PHEM Standard)
Public ReadOnly Property PmaxAntr As Single
Get
Return -PmaxEntl
End Get
End Property
'Maximal zulässige Leistung zum Generieren/Rekuperiren (Batterie laden) [kW] Vorzeichen negativ (PHEM Standard)
Public ReadOnly Property PmaxLaden As Single
Get
Return -PmaxLad
End Get
End Property
'--------------------------------------------------------------------------------------------
'--------------------------------- ~Batteriemodell Renhart~ ---------------------------------
'--------------------------------------------------------------------------------------------
'Methode zur Initialisierung - wird einmal aufgerufen
Public Function Bat_Init() As Boolean
Dim BFile As New cFile_V3
Dim FunkTemp As Single ' Temp-Funktion für Ri(Temp)
Dim U0_E As Single ' Ubatt(SOC(T), Ibatt=0), Entladekurve
Dim U0_L As Single ' Ubatt(SOC(T), Ibatt=0), Ladekurve
'Abbruch wenn's Datei nicht gibt
If sFilePath = "" Then Return False
If Not IO.File.Exists(sFilePath) Then Return False
If Not BFile.OpenRead(sFilePath) Then
Return False
End If
'Einlesen der Parameter:
a0 = BFile.ReadLine(0)
a1 = BFile.ReadLine(0)
a2 = BFile.ReadLine(0)
a3 = BFile.ReadLine(0)
a4 = BFile.ReadLine(0)
a5 = BFile.ReadLine(0)
a6 = BFile.ReadLine(0)
b0 = BFile.ReadLine(0)
b1 = BFile.ReadLine(0)
b2 = BFile.ReadLine(0)
b3 = BFile.ReadLine(0)
b4 = BFile.ReadLine(0)
b5 = BFile.ReadLine(0)
b6 = BFile.ReadLine(0)
c0 = BFile.ReadLine(0)
c1 = BFile.ReadLine(0)
c2 = BFile.ReadLine(0)
c3 = BFile.ReadLine(0)
c4 = BFile.ReadLine(0)
d0 = BFile.ReadLine(0)
d1 = BFile.ReadLine(0)
d2 = BFile.ReadLine(0)
SOC_MIN = BFile.ReadLine(0) '0..1 SOC_MIN = SOCzulu
SOC_MAX = BFile.ReadLine(0) '0..1 SOC_MAX = SOCzulo
SOC_Kap = BFile.ReadLine(0) '[Ah]
NCELLS = BFile.ReadLine(0) 'Anzahl der NiMH-Zellen
RI_20 = BFile.ReadLine(0) 'RI_20 = RiOhm (abzuklären)
T_AMB = BFile.ReadLine(0)
T_MAX = BFile.ReadLine(0)
CP = BFile.ReadLine(0)
MB = BFile.ReadLine(0)
BFile.Close()
BFile = Nothing
TempBat = T_AMB
PbatV = 0.0
SOC = GEN.SOCstart
LastSOC = MyEV.SOCstart
' ----------------------------------------------------------------------------------------
' Berechnung der Batteriespannung bei TempBat und SOC(0), Entladekurve
' ----------------------------------------------------------------------------------------
FunkTemp = Ftemp(TempBat)
U0_E = Uent(SOC) - (Uent(1) - Uent(0)) * 1.1 * (1 - FunkTemp)
Ubat = U0_E
' ----------------------------------------------------------------------------------------
' Berechnung der Batteriespannung bei TempBat und SOC(0), Ladekurve
' ----------------------------------------------------------------------------------------
U0_L = Ulad(SOC) - (Uent(1) - Uent(0)) * 1.1 * (1 - FunkTemp)
' ----------------------------------------------------------------------------------------
Return True
End Function
'Methode zur Berechnung der zulässigen Leistung - sekündlicher Aufruf
Public Sub Bat_Pzul(ByVal t As Integer)
Dim FunkTemp As Single ' Temp-Funktion für Ri(Temp)
Dim U0_E As Single ' Ubatt(SOC(T), Ibatt=0), Entladekurve
Dim U0_L As Single ' Ubatt(SOC(T), Ibatt=0), Ladekurve
If t < 1 Then
LastTempBat = T_AMB
LastSOC = MyEV.SOCstart
Else
LastTempBat = MyEV.TempBat(t - 1)
LastSOC = MyEV.SOC(t - 1)
End If
FunkTemp = Ftemp(LastTempBat)
U0_E = Uent(LastSOC) - (Uent(1) - Uent(0.0)) * 1.1 * (1 - FunkTemp)
PmaxEntl = -U0_E ^ 2 / (4.0 * RiTemp(LastTempBat) * 1000.0) ' in kW
U0_L = Ulad(LastSOC) - (Uent(1) - Uent(0.0)) * 1.1 * (1 - FunkTemp)
PmaxLad = U0_L ^ 2 / (4.0 * RiTemp(LastTempBat) * 1000.0) ' in kW
'PmaxEntl = -SOC_Kap * 3600 * (SOC(jz - 1) - SOC_MIN)
'PmaxLad = SOC_Kap * 3600 * (SOC_MAX - SOC(jz - 1))
End Sub
'Methode zur Berechnung der Batterieveluste und SOC für geg. Leistung - sekündlicher Aufruf
Public Sub Bat_Calc(ByVal Perf As Single, ByVal t As Integer)
Dim epsilon As Single = 0.001 ' Abfrageschranke
If t < 1 Then
LastTempBat = T_AMB
LastSOC = MyEV.SOCstart
Else
LastTempBat = MyEV.TempBat(t - 1)
LastSOC = MyEV.SOC(t - 1)
End If
Perf *= -1 'Vozeichenwechsel PHEM-Standard => Renhart-Standard
Select Case Perf
Case Is < -epsilon ' Assistieren (Entladen) der Batterie
' MsgBox("negativ" + Str(Perf))
Bat_Ent(Perf)
Case Is > epsilon ' Generieren (Laden) der Batterie
'MsgBox("positiv" + Str(Perf))
Bat_Lad(Perf)
Case Else ' Leistung ist zu klein, alles bleibt gleich
'MsgBox(Str(jz) + ": Betrag von " + Str(Perf) + " ist kleiner gleich " + Str(epsilon))
Bat_Nix()
End Select
'Input:
' Perf ...geforderte Leistung. Bedingung: PgMAX < Perf < PaMAX [kW]
' alle Paramer die in Bat_Init bestimmt/eingelesen wurden
' jz ...Aktueller Zeitschritt
' Alle Arrays von Zeitschritt 1 bis jz-1
'Output:
' SOC(jz)
' Ubat(jz)
' Ibat(jz)
' PbatV(jz)
'-------------TEST-------------
'PbatV(jz) = 0.2 * Math.Abs(Perf)
'SOC(jz) = SOC(jz - 1) + Perf / 5000
'Ubat(jz) = (SOC(jz) - SOC_MIN) / (SOC_MAX - SOC_MIN) * 80 + 120
'Ibat(jz) = Perf / Ubat(jz)
'-------------TEST-------------
End Sub
'Übergibt PeBat für geg. PiBat (Vorzeichen nach PHEM)
Public Function fPeBat(ByVal PiBat As Single) As Single
If PiBat < 0 Then
Return -fPbatLad(-PiBat)
Else
Return -fPbatEnt(-PiBat)
End If
End Function
Public Property FilePath() As String
Get
Return sFilePath
End Get
Set(ByVal value As String)
sFilePath = value
End Set
End Property
'--------------------------------------------------------------------------------------------
'----------------------------------------- PRIVATE ------------------------------------------
'--------------------------------------------------------------------------------------------
'Batterie entladen
Private Sub Bat_Ent(ByVal Perf As Single)
Dim FunkTemp As Single ' Temp-Funktion für Ri(Temp)
Dim U0_E As Single ' Ubatt(SOC(T), Ibatt=0), Entladekurve
Dim Ri_T As Single ' Ri bei Temperatur T, lokal
'Temperaturfunktion
FunkTemp = Ftemp(LastTempBat)
'Ri bestimmen abhängig von Temperatur
Ri_T = RiTemp(LastTempBat)
'Spannung bestimmen aus SOC und Spannungskurve
U0_E = Uent(LastSOC) - (Uent(1) - Uent(0)) * 1.1 * (1 - FunkTemp)
'Strom berechnen
Ibat = -U0_E / 2 / Ri_T + Math.Sqrt((U0_E / 2 / Ri_T) ^ 2 + Perf * 1000 / Ri_T)
'Batterieverluste
PbatV = Ibat ^ 2 * Ri_T / 1000.0
'Batterietemperatur
TempBat = LastTempBat + PbatV * 1000.0 * 1.0 / CP / MB
If TempBat >= T_MAX Then
TempBat = T_MAX
End If
'SOC berechnen
SOC = LastSOC + Ibat * 1.0 / (SOC_Kap * 3600)
'Korrektur für den aktuellen Zeitschritt
FunkTemp = Ftemp(TempBat)
U0_E = Uent(SOC) - (Uent(1) - Uent(0)) * 1.1 * (1 - FunkTemp)
Ri_T = RiTemp(TempBat)
Ubat = U0_E + Ibat * Ri_T
End Sub
'Batterie laden
Private Sub Bat_Lad(ByVal Perf As Single)
Dim FunkTemp As Single ' Temp-Funktion für Ri(Temp)
Dim U0_L As Single ' Ubatt(SOC(T), Ibatt=0), Entladekurve
Dim Ri_T As Single ' Ri bei Temperatur T, lokal
'Temperaturfunktion
FunkTemp = Ftemp(LastTempBat)
'Ri bestimmen abhängig von Temperatur
Ri_T = RiTemp(LastTempBat)
'Spannung bestimmen aus SOC und Spannungskurve
U0_L = Ulad(LastSOC) - (Ulad(1) - Ulad(0)) * 1.1 * (1 - FunkTemp)
'Strom berechnen
Ibat = +U0_L / 2 / Ri_T - Math.Sqrt((U0_L / 2 / Ri_T) ^ 2 - Perf * 1000 / Ri_T)
'Batterieverluste
PbatV = Ibat ^ 2 * Ri_T / 1000.0
'Batterietemperatur
TempBat = LastTempBat + PbatV * 1000.0 * 1.0 / CP / MB
If TempBat >= T_MAX Then
TempBat = T_MAX
End If
'SOC berechnen
SOC = LastSOC + Ibat * 1.0 / (SOC_Kap * 3600)
'Korrektur für den aktuellen Zeitschritt
FunkTemp = Ftemp(TempBat)
U0_L = Ulad(SOC) - (Ulad(1) - Ulad(0)) * 1.1 * (1 - FunkTemp)
Ri_T = RiTemp(TempBat)
Ubat = U0_L + Ibat * Ri_T
End Sub
'Batterie nix tun
Private Sub Bat_Nix()
'Dim SocProz As Single ' lokal, SOC in Prozent
'Dim FunkTemp As Single ' Temp-Funktion für Ri(Temp)
'Dim U0_L As Single ' Ubatt(SOC(T), Ibatt=0), Entladekurve
'Dim Ri_T As Single ' Ri bei Temperatur T, lokal
Ibat = 0.0
PbatV = 0.0
TempBat = LastTempBat
SOC = LastSOC
' ALT: Ubat(jz) = Ubat(jz - 1)
End Sub
'Übergibt PeBat beim Laden mit PEmot (Vorzeichen nach Renhart)
Private Function fPbatLad(ByVal PEmot As Single) As Single
Dim FunkTemp As Single
Dim U0_L As Single
Dim Ri_T As Single
Dim Ibat0 As Single
Dim PbatV0 As Single
Ri_T = RiTemp(LastTempBat)
FunkTemp = Ftemp(LastTempBat)
U0_L = Ulad(LastSOC) - (Ulad(1) - Ulad(0)) * 1.1 * (1 - FunkTemp)
If (PEmot * 1000 / Ri_T) > (U0_L / 2 / Ri_T) ^ 2 Then
Return 0
Else
Ibat0 = U0_L / 2 / Ri_T - Math.Sqrt((U0_L / 2 / Ri_T) ^ 2 - PEmot * 1000 / Ri_T)
PbatV0 = Ibat0 ^ 2 * Ri_T / 1000.0
Return PEmot + PbatV0
End If
End Function
'Übergibt PeBat beim Entladen mit PEmot (Vorzeichen nach Renhart)
Private Function fPbatEnt(ByVal PEmot As Single) As Single
Dim FunkTemp As Single
Dim U0_E As Single
Dim Ri_T As Single
Dim Ibat0 As Single
Dim PbatV0 As Single
Ri_T = RiTemp(LastTempBat)
FunkTemp = Ftemp(LastTempBat)
U0_E = Uent(LastSOC) - (Uent(1) - Uent(0)) * 1.1 * (1 - FunkTemp)
Ibat0 = -U0_E / 2 / Ri_T + Math.Sqrt((U0_E / 2 / Ri_T) ^ 2 + PEmot * 1000 / Ri_T)
PbatV0 = Ibat0 ^ 2 * Ri_T / 1000.0
Return PEmot - PbatV0
End Function
Private Function Uent(ByVal Socf As Single) As Single
Uent = (a0 + a1 * Socf + a2 * Socf ^ 2 + a3 * Socf ^ 3 + a4 * Socf ^ 4 + a5 * Socf ^ 5 + a6 * Socf ^ 6) * NCELLS
End Function
Private Function Ulad(ByVal Socf As Single) As Single
Ulad = (b0 + b1 * Socf + b2 * Socf ^ 2 + b3 * Socf ^ 3 + b4 * Socf ^ 4 + b5 * Socf ^ 5 + b6 * Socf ^ 6) * NCELLS
End Function
Private Function Ftemp(ByVal Tempf As Single) As Single
Ftemp = c0 + c1 * Tempf + c2 * Tempf ^ 2 + c3 * Tempf ^ 3 + c4 * Tempf ^ 4
End Function
Private Function RiTemp(ByVal Ri_T As Single) As Single
RiTemp = RI_20 * (2.0 - (d0 + d1 * Ri_T + d2 * Ri_T ^ 2))
End Function
End Class